Studying the progenitors of long GRBs through their nearby environments

Patricia Schady, Thomas Krühler, Mohit Tanga, Hanin Kuncarayakti, John Graham, Jochen Greriner, Sylvio Klose
Studying GRB progenitors through their hosts

Adapted from Graham&Fruchter, 2013
(see Krühler+15)

Fruchter+06

Adapted from Graham&Fruchter, 2013
(see Krühler+15)
MUSE data cube contains 90,000 spectra or 3600 images

- 1’ x 1’ field of view
- Wavelength range 4800-9300 Å
- Resolving power 1800-3600 Å
- Small spaxel size 0.2” x 0.2”
Probing the environments of SNe

SN2009md

Use Hα equivalent width to trace stellar age
GRB 980425/SN 1998bw

Closest GRB ever detected at $z=0.0085$
The host galaxy of GRB 980425/SN1998bw

Christensen+08

Krühler, HK, PS+17
A MUSE view of GRB980425/SN1998bw

Dopita et al. (2016) N2S2 diagnostic

GRB 980425/SN1998bw happened in a low-metallicity, star forming region of its host galaxy
Using Hα as tracer of stellar age

Hα equivalent width (EW):
ratio of Hα line flux (young stars) over continuum (old stars)

BPASS
Starburst99
GALEV

Kuncarayakti+16 (see also Leloudas+11, Kuncarayakti+13a,b, 18)

Hα EW traces stellar age, but only if we probe single stellar population
GRB 980425/SN1998bw unlikely to have originated in WR region, but progenitor mass consistent with GRB *collapsar* model
The supernovaless long GRB 111005A

- Second closest long GRB detected at z=0.013
- Massive, dusty host galaxy
The case of GRB 111005A

Oxygen abundance at exposition site of GRB 111005A likely to be $12 + \log(O/H) > 8.6$ (0.8 Z_{\odot})
The case of GRB 111005A

No spaxels around GRB position have $E(B-V) > 1$, but need $E(B-V) > 6$ to extinguish SN in the V band.
GRB111005A: a high-Z GRB formation channel

GRB and host galaxy properties very different to ‘typical’ long GRBs

BPASS12; Eldrige & Stanway (2013)

Tanga, Krühler, PS+18
But is this ok...
Dust Radial Distribution

Assume smooth dust distribution

![Histogram showing the distribution of E(B-V) values with decreasing number of events as E(B-V) increases.]

But what if…?

- $E_{B-V} < 0.8$
- $E_{B-V} > 1$

Decreasing E_{B-V} with r
Dust distribution in other galaxies

Determine E_{B-V} radial profile from sample of galaxies from AMUSING with similar stellar mass but range of inclinations.
Distribution of dust radial profiles
Distribution of dust radial profiles
Dependence of Z_{gas} on resolution

At resolution >500 pc, measured Z_{gas} traces galaxy average metallicity

MUSE offers new opportunity to investigate dependencies of inferred galaxy properties as function of spatial resolution

Niino+15
Dependence of H_α EW on resolution
The measured H$_{\alpha}$ decreases with increasing spatial resolution.
Summary and future work

• IFU observations have the potential of providing a wealth of information on the properties of long GRB progenitors

• But care is required to understand the limitations of the data - in particular spatial resolution

• Future work will use much larger sample of star forming galaxies observed with MUSE to investigate how distribution of \(E_{B-V} \) varies with galaxy inclination as a function of galaxy stellar mass, SFRs, etc…

• Larger-scale analysis of face on, star forming galaxies planned to quantify how measured galaxy properties (\(H_\alpha \) EW, \(Z_{\text{gas}} \), \(E_{B-V} \),…) vary with spatial resolution